Impact of suboptimal design features in the EU ETS

- Allocation in the electricity market -

22 May 2007

Hans Henrik Lindboe
Ea Energy Analyses

www.eaea.dk

ETS: Impact on spot market dispatch

ETS: Impact on investments

Long-run marginal costs of electricity generation

Impacts of emissions trading on the electricity sector (optimal design)

- Spot market
 - Ensures efficient CO2 reduction

- Investments
 - Provides incentive to invest in low carbon technologies

Project outline

- Goal: Assess impact of free allocation to new entrants in the EU ETS
- Scope: Investments in the North European Electricity Market in years 2006 – 2022
- Methodology: Use of Partial Equilibrium model
- Output: Investment impact, emissions, NAPs for 2005-7 electricity prices, welfare economy
- Funded by: Danish Environmental Protection Agency

Allocation to new entrants

.... is an investment subsidy potentially affecting investors' decisions regarding:

- What technology to choose
- Where investments are situated
- When investments are made

Market distortion => Welfare economic losses

What technology?

Biomass CHP

Wind

0

Coal CHP

Gas CHP

Nuclear

Modelling results Investments by fuel

Where investments are made?

Coal CHP: Share of total capital cost covered by CO2-allocation

Geographical distribution of investments (1)

Geographical distribution of investments (2)

When investments are made?

Rule of thumb: In an underinvested market the electricity price will increase until it reaches the LRMC of a new power plant

Allocation to new entrants distorts the market

- Spot market
 - Ensures efficient CO2 reduction

 \odot

- Investments
 - What? Incentive towards coal/lignite
 - Where? Investment move to countries allocating generously
 - When? Investments are moved forward in time

Welfare economic consequences

Norway

10 **€**/t: 158 20 €/t: 118

30 €/t:

Sweden

Germany

20 €/t: **-4.403**

30 €/t: **-15.578**

-694

10 **€**/t:

10 €/t: -187

20 €/t: **-252**

30 **€**/t: -42

Finland

10 €/t: 18

20 €/t: 62

30 **€**/t: 184

Denmark

10 **€**/t: -134

-10

20 **€**/t: -211

-325 30 **€**/t:

Total

10 **€**/t:

-839

20 **€**/t:

-4.685

30 €/t: -15.771

Mill. Euro

Ea Energianalyse

CO2-price with fixed cap

no allocation to new entrants

Conclusions on new entrant allocation

- Even more investments in coal power capacity
- Investments move to Germany
- Lower electricity prices
 - Consumers benefit in the short term
 - Existing electricity producers lose
- CO2- prices will increase to an extent where the subsidy-effect exceeds the total cost.
- Welfare-economic loss 25% of investment
- 2nd order effects not analysed, e.g. impacts on the carbon price